Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 19(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34822509

RESUMEN

Biofouling, which occurs when certain marine species attach and accumulate in artificial submerged structures, represents a serious economic and environmental issue worldwide. The discovery of new non-toxic and eco-friendly antifouling systems to control or prevent biofouling is, therefore, a practical and urgent need. In this work, the antifouling activity of a series of 24 xanthones, with chemical similarities to natural products, was exploited. Nine (1, 2, 4, 6, 8, 16, 19, 21, and 23) of the tested xanthones presented highly significant anti-settlement responses at 50 µM against the settlement of mussel Mytilus galloprovincialis larvae and low toxicity to this macrofouling species. Xanthones 21 and 23 emerged as the most effective larval settlement inhibitors (EC50 = 7.28 and 3.57 µM, respectively). Additionally, xanthone 23 exhibited a therapeutic ratio (LC50/EC50) > 15, as required by the US Navy program attesting its suitability as natural antifouling agents. From the nine tested xanthones, none of the compounds were found to significantly inhibit the growth of the marine biofilm-forming bacterial strains tested. Xanthones 4, 6, 8, 16, 19, 21, and 23 were found to be non-toxic to the marine non-target species Artemia salina (<10% mortality at 50 µM). Insights on the antifouling mode of action of the hit xanthones 21 and 23 suggest that these two compounds affected similar molecular targets and cellular processes in mussel larvae, including that related to mussel adhesion capacity. This work exposes for the first time the relevance of C-1 aminated xanthones with a 3,4-dioxygenated pattern of substitution as new non-toxic products to prevent marine biofouling.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Xantonas/farmacología , Animales , Organismos Acuáticos , Biopelículas/efectos de los fármacos , Bivalvos/efectos de los fármacos , Larva/efectos de los fármacos , Xantonas/química
2.
J Chem Inf Model ; 60(8): 3969-3984, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32692555

RESUMEN

G-Protein coupled receptors (GPCRs) are involved in a myriad of pathways key for human physiology through the formation of complexes with intracellular partners such as G-proteins and arrestins (Arrs). However, the structural and dynamical determinants of these complexes are still largely unknown. Herein, we developed a computational big-data pipeline that enables the structural characterization of GPCR complexes with no available structure. This pipeline was used to study a well-known group of catecholamine receptors, the human dopamine receptor (DXR) family and its complexes, producing novel insights into the physiological properties of these important drug targets. A detailed description of the protein interfaces of all members of the DXR family (D1R, D2R, D3R, D4R, and D5R) and the corresponding protein interfaces of their binding partners (Arrs: Arr2 and Arr3; G-proteins: Gi1, Gi2, Gi3, Go, Gob, Gq, Gslo, Gssh, Gt2, and Gz) was generated. To produce reliable structures of the DXR family in complex with either G-proteins or Arrs, we performed homology modeling using as templates the structures of the ß2-adrenergic receptor (ß2AR) bound to Gs, the rhodopsin bound to Gi, and the recently acquired neurotensin receptor-1 (NTSR1) and muscarinic 2 receptor (M2R) bound to arrestin (Arr). Among others, the work demonstrated that the three partner groups, Arrs and Gs- and Gi-proteins, are all structurally and dynamically distinct. Additionally, it was revealed the involvement of different structural motifs in G-protein selective coupling between D1- and D2-like receptors. Having constructed and analyzed 50 models involving DXR, this work represents an unprecedented large-scale analysis of GPCR-intracellular partner interface determinants. All data is available at www.moreiralab.com/resources/dxr.


Asunto(s)
Arrestinas , Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Dopaminérgicos , Transducción de Señal
3.
Molecules ; 25(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455828

RESUMEN

A series of thirteen xanthones 3-15 was prepared based on substitutional (appendage) diversity reactions. The series was structurally characterized based on their spectral data and HRMS, and the structures of xanthone derivatives 1, 7, and 8 were determined by single-crystal X-ray diffraction. This series, along with an in-house series of aminated xanthones 16-33, was tested for in-vitro antimicrobial activity against seven bacterial (including two multidrug-resistant) strains and five fungal strains. 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7) and 1-(dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8) exhibited antibacterial activity against all tested strains. In addition, 3,4-dihydroxy-1-methyl-9H-xanthen-9-one (3) revealed a potent inhibitory effect on the growth of dermatophyte clinical strains (T. rubrum FF5, M. canis FF1 and E. floccosum FF9), with a MIC of 16 µg/mL for all the tested strains. Compounds 3 and 26 showed a potent inhibitory effect on two C. albicans virulence factors: germ tube and biofilm formation.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Xantonas/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Cristalografía por Rayos X , Humanos , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Difracción de Rayos X , Xantonas/síntesis química , Xantonas/farmacología
4.
Curr Med Chem ; 27(5): 760-794, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30182840

RESUMEN

Paediatric Acquired ImmunoDeficiency Syndrome (AIDS) is a life-threatening and infectious disease in which the Human Immunodeficiency Virus (HIV) is mainly transmitted through Mother-To- Child Transmission (MTCT) during pregnancy, labour and delivery, or breastfeeding. This review provides an overview of the distinct therapeutic alternatives to abolish the systemic viral replication in paediatric HIV-1 infection. Numerous classes of antiretroviral agents have emerged as therapeutic tools for downregulation of different steps in the HIV replication process. These classes encompass Non- Nucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs), Nucleoside/Nucleotide Analogue Reverse Transcriptase Inhibitors (NRTIs/NtRTIs), INtegrase Inhibitors (INIs), Protease Inhibitors (PIs), and Entry Inhibitors (EIs). Co-administration of certain antiretroviral drugs with Pharmacokinetic Enhancers (PEs) may boost the effectiveness of the primary therapeutic agent. The combination of multiple antiretroviral drug regimens (Highly Active AntiRetroviral Therapy - HAART) is currently the standard therapeutic approach for HIV infection. So far, the use of HAART offers the best opportunity for prolonged and maximal viral suppression, and preservation of the immune system upon HIV infection. Still, the frequent administration of high doses of multiple drugs, their inefficient ability to reach the viral reservoirs in adequate doses, the development of drug resistance, and the lack of patient compliance compromise the complete HIV elimination. The development of nanotechnology-based drug delivery systems may enable targeted delivery of antiretroviral agents to inaccessible viral reservoir sites at therapeutic concentrations. In addition, the application of Computer-Aided Drug Design (CADD) approaches has provided valuable tools for the development of anti-HIV drug candidates with favourable pharmacodynamics and pharmacokinetic properties.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH , Niño , Infecciones por VIH/tratamiento farmacológico , Humanos , Inhibidores de la Transcriptasa Inversa
5.
Adv Synth Catal ; 361(7): 1500-1537, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31680791

RESUMEN

The selective incorporation of fluorinated motifs, in particular CF2FG (FG=a functional group) and CF2H groups, into organic compounds has attrracted increasing attention since organofluorine molecules are of the utmost importance in the areas of nuclear imaging, pharmaceutical, agrochemical, and material sciences. A variety of synthetic approaches has been employed in late-stage difluoroalkylation reactions. Visible light photoredox catalysis for the production of CF2FG and CF2H radicals has provided a more sustainable alternative to other conventional radical-triggered reactions from the viewpoint of safety, cost, availability, and "green" chemistry. A wide range of difluoroalkylating reagents has been successfully implemented in these organic transformations in the presence of transition metal complexes or organic photocatalysts. In most cases, upon excitation via visible light irradiation with fluorescent light bulbs or blue light-emitting diode (LED) lamps, these photocatalysts can act as both reductive and oxidative quenchers, thus enabling the application of electron-donor or electron-acceptor difluoroalkylating reagents for the generation of CF2FG and CF2H radicals. Subsequent radical addition to substrates and additional organic transformations afford the corresponding difluoroalkylated derivatives. The present review describes the distinct strategies for the transition metal- and organic-photocatalyzed difluoroalkylation of a broad range of organic substrates by visible light irradiation reported in the literature since 2014.

6.
Angew Chem Int Ed Engl ; 58(37): 13149-13154, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323171

RESUMEN

Despite a growing interest in CHF2 in medicinal chemistry, there is a lack of efficient methods for the insertion of CHF18 F into druglike compounds. Herein described is a photoredox flow reaction for 18 F-difluoromethylation of N-heteroaromatics that are widely used in medicinal chemistry. Following the two-step synthesis for a new 18 F-difluoromethylation reagent, the photoredox reaction is completed within two minutes and proceeds by C-H activation, circumventing the need for pre-functionalization of the substrate. The method is operationally simple and affords straightforward access to radiolabeled N-heteroaromatics with high molar activity suitable for biological in vivo studies and clinical application.


Asunto(s)
Radioisótopos de Flúor/química , Hidrocarburos Aromáticos/química , Halogenación , Hidrocarburos Aromáticos/síntesis química , Metilación , Oxidación-Reducción , Tomografía de Emisión de Positrones/métodos , Radioquímica
7.
Molecules ; 24(10)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121972

RESUMEN

Xanthone scaffold has been regarded as an attractive chemical tool in the search for bioactive molecules with antitumor activity, and in particular two xanthone derivatives, 12-hydroxy-2,2-dimethyl-3,4-dihydro-2H,6H-pyrano [3,2-b]xanthen-6-one (4) and 3,4-dimethoxy-9-oxo-9H-xanthene-1-carbaldehyde (5), were described as a murine double minute 2 (MDM2)-p53 inhibitor and a TAp73 activator, respectively. The xanthone 5 was used as a starting point for the construction of a library of 3,4-dioxygenated xanthones bearing chemical moieties of described MDM2-p53 inhibitors. Eleven aminated xanthones were successfully synthesized and initially screened for their ability to disrupt the MDM2-p53 interaction using a yeast cell-based assay. With this approach, xanthone 37 was identified as a putative p53-activating agent through inhibition of interaction with MDM2. Xanthone 37 inhibited the growth of human colon adenocarcinoma HCT116 cell lines in a p53-dependent manner. The growth inhibitory effect of xanthone 37 was associated with the induction of G1-phase cell cycle arrest and increased protein expression levels of p53 transcriptional targets. These results demonstrated the potential usefulness of coupling amine-containing structural motifs of known MDM2-p53 disruptors into a 3,4-dioxygenated xanthone scaffold in the design of novel and potent p53 activators with antitumor activity and favorable drug-like properties. Moreover, in silico docking studies were performed in order to predict the binding poses and residues involved in the potential MDM2-p53 interaction.


Asunto(s)
Antineoplásicos/síntesis química , Neoplasias del Colon/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Xantonas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Simulación por Computador , Células HCT116 , Humanos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Xantonas/síntesis química , Xantonas/química
8.
Molecules ; 24(4)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781374

RESUMEN

P-glycoprotein (P-gp) plays a crucial role in the protection of susceptible organs, by significantly decreasing the absorption/distribution of harmful xenobiotics and, consequently, their toxicity. Therefore, P-gp has been proposed as a potential antidotal pathway, when activated and/or induced. Knowing that xanthones are known to interact with P-gp, the main goal was to study P-gp induction or/and activation by six new oxygenated xanthones (OX 1-6). Furthermore, the potential protection of Caco-2 cells against paraquat cytotoxicity was also assessed. The most promising compound was further tested for its ability to increase P-gp activity ex vivo, using everted intestinal sacs from adult Wistar-Han rats. The oxygenated xanthones interacted with P-gp in vitro, increasing P-gp expression and/or activity 24 h after exposure. Additionally, after a short-incubation period, several xanthones were identified as P-gp activators, as they immediately increased P-gp activity. Moreover, some xanthones decreased PQ cytotoxicity towards Caco-2 cells, an effect prevented under P-gp inhibition. Ex vivo, a significant increase in P-gp activity was observed in the presence of OX6, which was selectively blocked by a model P-gp inhibitor, zosuquidar, confirming the in vitro results. Docking simulations between a validated P-gp model and the tested xanthones predicted these interactions, and these compounds also fitted onto previously described P-gp induction and activation pharmacophores. In conclusion, the in vitro, ex vivo, and in silico results suggest the potential of some of the oxygenated xanthones in the modulation of P-gp, disclosing new perspectives in the therapeutics of intoxications by P-gp substrates.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Xantonas/síntesis química , Xantonas/farmacología , Secuencia de Aminoácidos , Animales , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Dibenzocicloheptenos/metabolismo , Humanos , Intestinos/efectos de los fármacos , Masculino , Chaperonas Moleculares/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxígeno/metabolismo , Paraquat/metabolismo , Unión Proteica , Quinolinas/metabolismo , Ratas Wistar , Transducción de Señal , Relación Estructura-Actividad
9.
Cancer Lett ; 446: 90-102, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30664963

RESUMEN

TAp73 is a key tumor suppressor protein, regulating the transcription of unique and shared p53 target genes with crucial roles in tumorigenesis and therapeutic response. As such, in tumors with impaired p53 signaling, like neuroblastoma, TAp73 activation represents an encouraging strategy, alternative to p53 activation, to suppress tumor growth and chemoresistance. In this work, we report a new TAp73-activating agent, the 1-carbaldehyde-3,4-dimethoxyxanthone (LEM2), with potent antitumor activity. Notably, LEM2 was able to release TAp73 from its interaction with both MDM2 and mutant p53, enhancing TAp73 transcriptional activity, cell cycle arrest, and apoptosis in p53-null and mutant p53-expressing tumor cells. Importantly, LEM2 displayed potent antitumor activity against patient-derived neuroblastoma cells, consistent with an activation of the TAp73 pathway. Additionally, potent synergistic effects were obtained for the combination of LEM2 with doxorubicin and cisplatin in patient-derived neuroblastoma cells. Collectively, besides its relevant contribution to the advance of TAp73 pharmacology, LEM2 may pave the way to improved therapeutic alternatives against neuroblastoma.


Asunto(s)
Antineoplásicos/farmacología , Neuroblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Xantonas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Mutación , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Transducción de Señal/efectos de los fármacos , Proteína Tumoral p73/genética , Proteína p53 Supresora de Tumor/genética
10.
Curr Top Med Chem ; 18(13): 1091-1109, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30068276

RESUMEN

Cancer has become one of the main leading causes of morbidity and mortality worldwide. One of the critical drawbacks of current cancer therapeutics has been the lack of the target-selectivity, as these drugs should have an effect exclusively on cancer cells while not perturbing healthy ones. In addition, their mechanism of action should be sufficiently fast to avoid the invasion of neighbouring healthy tissues by cancer cells. The use of conventional chemotherapeutic agents and other traditional therapies, such as surgery and radiotherapy, leads to off-target interactions with serious side effects. In this respect, recently developed target-selective Antibody-Drug Conjugates (ADCs) are more effective than traditional therapies, presumably due to their modular structures that combine many chemical properties simultaneously. In particular, ADCs are made up of three different units: a highly selective Monoclonal antibody (Mab) which is developed against a tumour-associated antigen, the payload (cytotoxic agent), and the linker. The latter should be stable in circulation while allowing the release of the cytotoxic agent in target cells. The modular nature of these drugs provides a platform to manipulate and improve selectivity and the toxicity of these molecules independently from each other. This in turn leads to generation of second- and third-generation ADCs, which have been more effective than the previous ones in terms of either selectivity or toxicity or both. Development of ADCs with improved efficacy requires knowledge at the atomic level regarding the structure and dynamics of the molecule. As such, we reviewed all the most recent computational methods used to attain all-atom description of the structure, energetics and dynamics of these systems. In particular, this includes homology modelling, molecular docking and refinement, atomistic and coarse-grained molecular dynamics simulations, principal component and cross-correlation analysis. The full characterization of the structure-activity relationship devoted to ADCs is critical for antibody-drug conjugate research and development.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antineoplásicos/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular
11.
Curr Neuropharmacol ; 16(6): 786-848, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29521236

RESUMEN

Parkinson's Disease (PD) is a long-term neurodegenerative brain disorder that mainly affects the motor system. The causes are still unknown, and even though currently there is no cure, several therapeutic options are available to manage its symptoms. The development of novel antiparkinsonian agents and an understanding of their proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard therapy for the symptomatic treatment of motor dysfunctions associated to PD. However, the development of dyskinesias and motor fluctuations (wearing-off and on-off phenomena) associated with long-term L-DOPA replacement therapy have limited its antiparkinsonian efficacy. The investigation for non-dopaminergic therapies has been largely explored as an attempt to counteract the motor side effects associated with dopamine replacement therapy. Being one of the largest cell membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a relevant target for drug discovery focused on a wide range of therapeutic areas, including Central Nervous System (CNS) diseases. The modulation of specific GPCRs potentially implicated in PD, excluding dopamine receptors, may provide promising non-dopaminergic therapeutic alternatives for symptomatic treatment of PD. In this review, we focused on the impact of specific GPCR subclasses, including dopamine receptors, adenosine receptors, muscarinic acetylcholine receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine receptors, on the pathophysiology of PD and the importance of structure- and ligand-based in silico approaches for the development of small molecules to target these receptors.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Simulación por Computador , Enfermedad de Parkinson/tratamiento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Antiparkinsonianos/química , Humanos , Modelos Moleculares , Enfermedad de Parkinson/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Relación Estructura-Actividad
12.
Med Res Rev ; 36(5): 789-844, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27302609

RESUMEN

The growth inhibitory activity of p53 tumor suppressor is tightly regulated by interaction with two negative regulatory proteins, murine double minute 2 (MDM2) and X (MDMX), which are overexpressed in about half of all human tumors. The elucidation of crystallographic structures of MDM2/MDMX complexes with p53 has been pivotal for the identification of several classes of inhibitors of the p53-MDM2/MDMX interaction. The present review provides in silico strategies and screening approaches used in drug discovery as well as an overview of the most relevant classes of small-molecule inhibitors of the p53-MDM2/MDMX interaction, their progress in pipeline, and highlights particularities of each class of inhibitors. Most of the progress made with high-throughput screening has led to the development of inhibitors belonging to the cis-imidazoline, piperidinone, and spiro-oxindole series. However, novel potent and selective classes of inhibitors of the p53-MDM2 interaction with promising antitumor activity are emerging. Even with the discovery of the 3D structure of complex p53-MDMX, only two small molecules were reported as selective p53-MDMX antagonists, WK298 and SJ-172550. Dual inhibition of the p53-MDM2/MDMX interaction has shown to be an alternative approach since it results in full activation of the p53-dependent pathway. The knowledge of structural requirements crucial to the development of small-molecule inhibitors of the p53-MDMs interactions has enabled the identification of novel antitumor agents with improved in vivo efficacy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular , Química Farmacéutica/métodos , Descubrimiento de Drogas , Humanos , Terapia Molecular Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Relación Estructura-Actividad Cuantitativa , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...